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Missing data analyses have received considerable recent attention in the
methodological literature, and two “modern” methods, multiple imputation
and maximum likelihood estimation, are recommended. The goals of this
article are to (a) provide an overview of missing-data theory, maximum like-
lihood estimation, and multiple imputation; (b) conduct a methodological
review of missing-data reporting practices in 23 applied research journals,
and (¢) provide a demonstration of multiple imputation and maximum like-
lihood estimation using the Longitudinal Study of American Youth data. The
results indicated that explicit discussions of missing data increased sub-
stantially between 1999 and 2003, but the use of maximum likelihood esti-
mation or multiple imputation was rarve; the studies relied almost exclusively
on listwise and pairwise deletion.
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Missing data are a common problem in quantitative research studies. Standard
statistical procedures were developed for complete data sets, so missing values rep-
resent a considerable nuisance to the analyst. Traditionally, missing data were dealt
with by means of various ad hoc methods that attempted to “fix” the data before
analysis. The blanket removal of cases with missing data (i.e., listwise deletion) is
one such strategy. Another method involves substituting missing values with the
variable mean. Unfortunately, these ad hoc traditional methods can seriously
bias sample statistics and have been criticized in the methodological literature.
Referring to those methods, Little and Rubin (1987) stated, “| W |e do not generally
recommend any of them” (p. 39). More recently, a report by the APA (American
Psychological Association) Task Force on Statistical Inference (Wilkinson &
Task Force on Statistical Inference, 1999) strongly discouraged the use traditional
missing-data methods (e.g.. listwise and pairwise deletion), stating that they are
“among the worst methods available for practical applications” (p. 598).

During the last 25 years, there have been substantial methodological advances
in the area of missing-data analyses (West, 2001). Specifically, two so-calied
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“modern” missing-data techniques, maximum likelihood (ML) estimation and
multiple imputation (MI), are currently considered “state of the art” (Schafer &
Graham, 2002) and are the recommended procedures in the methodological lit-
erature. These methods have a strong theoretical framework and are supported
by a growing number of empirical research studies that demonstrate their effec-
tiveness (e.g., Arbuckle, 1996; Enders, 2001a, 2001b, 2003; Enders & Bandalos,
2001; Gold & Bentler, 2000; Graham, Hofer, & MacKinnon, 1996; Graham
& Schafer, 1999; Muthén, Kaplan, & Hollis, 1987; Kaplan, 1995; Wothke, 2000).
Furthermore, the availability of ML and MI routines has increased dramatically
in the last few years, and these methods are now implemented in a variety of com-
mercial and freeware software packages.

Quoted in a recent issue of APA’s Monitor on Psychology, Stephen West, the
editor of Psychological Methods, stated that “{rJoutine implementation of these
new methods of addressing missing data [ML and MI] will be one of the major
changes in research over the next decade” (Azar, 2002, p. 70). In line with that pre-
diction, the purpose of this article is threefold. First, we provide an overview of
Rubin’s (1976) theoretical framework for missing data and show how it supports the
use of ML and MI. Although these procedures may be familiar to many methodol-
ogists, our informal observations (e.g., discussions with colleagues and manuscript
reviews) underscore the need to disseminate the information in a nontechnical fash-
jon to substantive researchers. Second, if missing-data estimation will undergo a
major change during the course of the coming decade, one might reasonably ask,
How do rescarchers currently deal with missing data in their studies? Accordingly,
the second purpose of this article is to provide a methodological review of current
missing-data reporting practices in a sample of educational and applied psychol-
ogy journals from 1999 and 2003. Finally, we conducted a heuristic analysis to
demonstrate the use of ML and M1, in hopes of providing a procedural model for sub-
stantive researchers as they begin to implement these techniques in their own work.

An Overview of Missing-Data Issues
Missing-Data Theory

To appreciate why ML and Ml are preferred over traditional missing-data meth-
ods, it is first necessary to understand Rubin’s (1976) theoretical framework for
missing data. Rubin outlined three “mechanisms” that can be thought of as proba-
bilistic explanations for why data are missing. In another sense, these mechanisms
represent assumptions that dictate the conditions under which a particular missing-
data method will provide optimal performance. Although the subsequent discussion
may give the impression that Rubin’s mechanisms are mutually exclusive, note
that all three may be present in a given data set (Yuan & Bentler, 2000).

Rubin (1976) defined a missing completely at random (MCAR) mechanism
as one where the missing values on a particular variable X are unrelated to other
variables in the data set as well as the underlying values of X itself. Essentially,
the observed data points represent a random sample of the hypothetically com-
plete data set. To illustrate, suppose an educational researcher is conducting a
longitudinal study of reading achievement in an elementary school population.
Data would be described as MCAR if children were absent from an assessment
because of random factors such as illness or a death in the family. Similarly, a
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child might permanently leave the study if her parents relocated to a different
city. Assuming these factors were unrelated to other measured variables such as
socioeconomic status, the observed scores represent a random sample of the
hypothetically complete data set.

In certain circumstances MCAR missing data might even be a purposive byprod-
uct of the data collection procedure (Graham, Hofer, & MacKinnon, 1996; Graham,
Taylor, & Cumsilie, 2001; Kaplan, 1995). For example, the National Assessment
of Educational Progress (NAEP) uses a matrix sampling procedure to administer
different blocks of items to examinees. By design, examinees will have complete
data on the blocks of items that were administered, and missing values on the blocks
that were not administered. The resulting data arc MCAR, as the missing item
blocks are, by definition, unrelated to a student’s underlying achievement as well as
other measured variables. It is important to note that MCAR is the only mechanism
that can be empirically tested from a set of data (Little, 1988).

Rubin’s missing at random (MAR) mechanism is less restrictive in the sense
that missing values on a variable X can be related to other measured variables but
still must be unrelated to the underlying values of X. Continuing with the read-
ing assessment example, suppose that children from low-income houscholds
(e.g., students who receive free or reduced-price lunch) are found to have higher
rates of attrition than other students. Furthermore, within a given income bracket,
there is no relationship between attrition and achievement (i.c., there is no resid-
ual relationship between attrition and achievement once income is controlled
for). In this case the propensity for missing data is retated to a measured variable
(income) but unrelated to a student’s underlying achievement level. Note that
MAR is an untestable assumption and could only be verified if we had knowledge
of the missing achievement scores.

Finally, a missing not at random (MNAR) mechanism results when the prob-
ability of missing values on a variable X is related to the underlying values of X.
Returning to the reading assessment example, the data would be described as
MNAR if children who possessed poor reading skills were more likely to skip test
questions because of comprehension difficulties. In this case, missing values on
the reading assessment are directly related to underlying reading achievement.

Rubin’s (1976) missing-data mechanisms have important implications for the
performance of a given missing-data method. With any statistical procedure, the
quality of the inferences we make is, in part, a function of mecting certain analytic
assumptions (e.g., homogeneity of variance in ANOVA analyses). ML and Ml
require the MAR assumption and thus will produce paramcter estimates (c.g.,
regression weights) that arc unbiased and cfficient (i.e., have low sampling {luctu-
ation) when data are MAR or MCAR. In contrast, traditional missing-data meth-
ods (e.g., listwise deletion) will generally produce biased parameter estimates
under MAR and generally requirc MCAR data.

When choosing a statistical procedure, we often prefer methods that are robust
to, or minimally affected by, assumption violations. If Rubin’s (1976) mechanisms
are viewed as assumptions (albeit largely untestable), a compelling argument can
be made that ML and MI are more “robust™ in the sensc that they perform opli-
mally under a wider variety of conditions (MAR and MCAR) than traditional
methods (typically, MCAR only). However, as in many other facets of life, there
is no such thing as a (statistical) free lunch. The previous discussion is not meant
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to imply that ML and MI will always provide optimal performance, as those meth-
ods will be biased if data are MNAR. However, some authors have suggested that
the bias may be less than that associated with traditional approaches in many cases
(e.g., Muthén, Kaplan, & Hollis, 1987). Second, ML and MI will always require
the multivariate normality assumption, even in cases where an alternative analytic
procedure may not. However, there is evidence to suggest that normality violations
minimally affect parameter estimate bias (Enders, 2001a; Graham & Schafer,
1999). Based on the methodological literature to date, we believe that, in many
cases, violating missing-data assumptions (e.g., using listwise deletion when data
are MAR) will be far more deleterious than violating the muitivariate normality
assumption required by ML and M1

Traditional Missing-Data Technigues

Literally dozens of ad hoc missing-data techniques have been proposed in the
literature. In the interest of space, we limit our discussion to a small selection of
these techniques. A number of excellent sources are available to readers who are
interested in learning more about traditional missing-data methods (e.g., Allison,
2002; Little & Rubin, 2002; Schafer & Graham, 2002).

Listwise Deletion

Listwise deletion discards all cases with missing values on one or more variables.
Not surprisingly, this can result in a potentially dramatic reduction in the sample
size, and thus in statistical power. Perhaps more problematic is the fact that, in gen-
eral, listwise deletion will produce unbiased parameter estimates only when data are
MCAR. Even when data are MCAR, the reduction in sample size results in lower
power than would be obtained from ML and MI (e.g., Enders & Bandalos, 2001).

Puairwise Deletion

Pairwise deletion attempts to use all available data by discarding cascs on an
analysis-by-analysis basis. This method is frequently described in the context of a
covariance (or correlation) matrix, whereby each variance and covariance term is
computed by using all cases with complete data on a given variable or variable pair.
However, the definition of pairwise deletion need not be restricted to correlational
analyses. Our methodological review revealed numerous situations where a series
of ANOVA analyses were conducted, each based on a different .

Pairwise deletion also has important limitations. The comparability of analyses
within a study is problematic, as different subsets of cases are used for each analy-
sis. It is also widely documented that a pairwise delction covariance matrix need
not be positive definite (i.e., certain elements in the matrix may take on impossi-
ble values, given the other elements), which can cause estimation problems for
multivariate analyses that rely on a covariance matrix (e.g., structural equation
models). Finally, pairwise deletion also requires the MCAR assumption to produce
unbiased parameter estimates.

Mean Imputation

Several variations of mean imputation (i.e., mean substitution) have been pro-
posed. Typically, the arithmetic mean of each variable is computed from the available
scores, and missing values are replaced by the means. The simplicity of this method
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is appealing, as the “filled-in” data are analyzed as if there were no missing values
to begin with. However, imputing missing values with the mean will truncate the

variance of the variable as well as its covariance with other variables. This is clear
if one examines the following formula for a covariance:

2 2 = Eiy=7) (1)

cov,, = 1
n-—

It is straightforward to see that any case with a missing score (X or Y) will con-
tribute a value of zero to the numerator of Equation 1, thereby reducing the magni-
tude of the covariance, and by extension, the Pearson’s correlation (= cov,,/0,0,).
The missing-data mechanism matters very little in this case, as mean imputation will
produce biased estimates of any parameter except the mean, regardless of whether
data are MCAR, MAR, or MNAR.

Regression Imputation

Also referred to as conditional mean imputation, regression imputation replaces
missing values with the predicted scores from a linear regression equation. Regres-
sion imputation is relatively straightforward if missing values are isolated on a sin-
gle variable (i.c., there is a single, univariate missing-data pattern). In this case the
incomplete variable is regressed on other measured variables, and missing values
are replaced with the predicted scores from this analysis. The problem with this
procedure is that the “filled-in” data lack variability present in the hypothetically
complete data set, because all imputed values fall directly on a regression line. The
resulting bias in variance and covariance terms can be mitigated by adding a ran-
domly sampled residual term to each imputed value (i.e., stochastic regression impu-
tation). Regression imputation can become fairly complicated when there are multiple
patterns of missing data, as different regression equations must be constructed for
each unique pattern. Regression imputation can produce parameter estimates that
are consistent (i.e., approximately unbiased in large samples) under MAR; Little
and Rubin (2002, p. 64) describe this method as a “historical precursor” to ML esti-
mation described subsequently.

Modern Missing-Data Techniques

We now describe the so-called “modern” missing-data techniques currently rec-
ommended in the methodological literature, ML and MI.

Maximum Likelihood Estimation

Many widely used statistical procedures (e.g., structural equation models and
hierarchical linear models) rely on ML estimation, rather than least squares, to
obtain estimates of model parameters. The basic goal of ML estimation is to iden-
tity the population parameter values most likely to have produced a particular sam-
ple of data. This usually requires an iterative process whereby the model fitting
program “tries out” different values for the parameters of interest (e.g., regression
coefficients) en route to identifying the values most likely to have produced the
sample data. The fit of the data to a particular set of parameter values is gauged by
a log likelihood value that quantifies the relative probability of a particular sample,
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given that the data originated from a normally distributed population. Interested
readers can consult Enders (in press) for an overview of the basic principles of ML
estimation. To be clear, ML estimation can be used to estimate models with or
without missing, and could be used in conjunction with a traditional missing-data
technique (e.g., a structural equation model could be estimated following listwise
deletion). However, throughout this article we use the term ML to refer to maxi-
mum likelihood estimation with missing data under the MAR assumption (also
referred to as direct ML or full information ML in the missing-data literature).

To illustrate ML estimation, suppose it was of interest to estimate a vector of
means and a covariance matrix (p and 2, respectively) from an incomplete data
set. ML estimation involves the computation of a log likelihood value at each iter-
ation, or estimation cycle, and an individual’s contribution to this log likelihood is
shown in Equation 2.

1 1 o
logL; = K; — “2‘10g|2,-‘ 5()’:‘ = e} z,-](yi =) 2

The scores for individual i are substituted into y,, and the parameter estimates
(means and covariances) are substituted into p and 3. The term (y; — L) Z7(yi — W)
is of particular interest, as it quantifies the discrepancy between a single individual’s
scores and the parameter values at a particular iteration—readers who are familiar
with multivariate statistics may recognize this term as Mahalanobis distance. Sum-
ming Equation 2 across the entire sample produces a log likelihood value that quan-
tifies the relative probability that the data were sampled from a normally distributed
population with a particular mean and covariance matrix (u and %, respectively). At
each iteration, the values of p and 3, are adjusted in an attempt to identify the set of
values with the highest log likelihood (i.e., pro bability of producing the sample data).

ML estimation is ideally suited for missing-data problems because each per-
son’s score vector, y;, need not be complete. The i subscript in Equation 2 indicates
that the elements in each person’s data vector may differ in number and content.
To illustrate, suppose it were of interest to estimate the means and covariance
matrix for three variables: hours spent doing homework (HW), parental involve-
ment in homework (PI), and reading achievement (RA). For students with com-
plete data, the Mahalanobis distance portion of Equation 2 would be computed as

F 4 2 —l
Yaw W aw O uw Yuw W aw
2
Yer | — | Mpr Ouwzrr Opr Yer |~ | Mpr
2
Yra M ra Cuwsrs Oprzrs Ori YrA M ra

In contrast, students with missing homework effort scores would have their Maha-
lanobis distance computed on the basis of only the two variables for which they
had data, as shown here:

Eo-Ra e T D

530



Missing Data in Educational Research

When using ML estimation there is no need to discard cases that have incom-
plete data, nor is it necessary to “fix” the data (e.g., impute missing values with the
mean) before running the analysis; estimation is based on all available data points,
and subjects need not have complete data.

[t is not obvious from the previous equations, but the inclusion of cases with
partial data actually contributes to the estimation of all parameters. Although
missing values are not imputed during this process, the partial data do imply
probable values for the missing scores via the correlations among the variables.
To illustrate, a small educational data set containing the number of absences and
achievement scores for a hypothetical sample of 10 students is given in Table 1.
To simulate an MAR missing data, achievement scores were deleted for the three
students with the highest number of absences (i.e., missing scores on the achieve-
ment variable were related to another measured variable). Also, a single absence
score was randomly deleted (i.e., an MCAR mechanism). These data are useful
strictly for demonstration purposes, and it would normally be unwise to use ML
estimation with such a small sample. The means, standard deviations, and cor-
relation between absences and achievement were estimated by using ML, list-
wise deletion, and mean imputation, and the results of these analyses are given
in Table 2.

[f the complete data estimates are viewed as the “true” values in the exam-

ple, it is clear that ML estimation produces estimates that are relatively free of

distortion, particularly when compared to listwise deletion and mean imputa-
tion. To put the bias in some perspective, the listwise deletion achievement
mean is “off” by about one standard error unit, while the distortion in the
absence mean is equi-valent to nearly two standard error units. Not only were
these results expected on the basis of Rubin’s (1976) theoretical work, but it is
fairly straightforward to understand why the traditional methods performed
poorly. Recall that achievement scores were selectively missing for cases with
high absences. Because the two variables were negatively correlated (r = —=0.57),

TABLE 1
Hypothetical education data
Complete MAR missing
Absences Achievement Absences Achievement
0 53 0 53
2 61 2 61
6 70 6 70
7 47 2 47
8 38 8 38
9 53 9 53
11 47 11 47
14 58 14 ?
IS 43 15 s
18 37 18 ?

Note. Question marks indicate that data points were deleted to simulate MCAR and MAR.
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TABLE 2
Missing data parameter estimates from hypothetical education data

Missing-data method

Complete Maximum Listwise Mean

Variable data likelihood deletion imputation
Mean

Absences 9.00 9:32. 6.00 9.22

Achievement 50.20 50.26 53.67 5211
Standard deviation

Absences 5.38 5.56 3.87 5.34

Achievement 9.63 10.15 10.09 8.06
Correlation

Absences/achievement =57 -.50 -39 -26

the lower tail of the achievement distribution was truncated, as was the upper
tail of the absence distribution—the bias in the listwise deletion mean estimates
reflects this. In contrast, ML uses all observed data and incorporates the partial
data vectors during estimation. Although achievement scores are missing for
three cases, the inclusion of absence data for these students implies different
parameter values than would be obtained if these cases were removed from
the analysis. Although it may not be obvious from the equations presented
earlier, ML essentially “borrows” information from the absence data to estimate
the achievement parameters, and does so via the linear relationship between
these two variables. As described previously, replacing missing values with
the arithmetic mean adds nothing to the numerator of the covariance (and vari-
ance) formula, thereby negatively biasing variances and covariances (and thus
correlations).

One might reasonably argue that the preceding example was “rigged” in favor
of ML estimation, and it is true that scores were deleted in a way that would dis-
advantage listwise deletion. However, this scenario demonstrates an important
finding that follows from Rubin’s (1976) theoretical work, namely that ML esti-
mation will provide optimal performance in situations where traditional meth-
ods fail. As noted previously, one might view ML estimation as being more
“robust” in the sense that it requires less strict assumptions about the missing
data, and this example illustrates the point. Again, it is important to note that ML
estimation will likely produce biased parameter estimates when data are MNAR
(i.e., missing values are related to the underlying values of the variable), and we
do not mean to suggest that ML and MI provide a panacea for all missing-data
problems.

Before proceeding to MI, we briefly describe the EM (expectation maximiza-
tion) algorithm, a common method for obtaining ML parameter estimates. EM
was originally proposed as a method for obtaining ML estimates of a covariance
matrix and mean vector (Dempster, Laird, & Rubin, 1977) but has since been
adapted for use in a wide variety of estimation problems (e.g., hierarchical linear
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models; Raudenbush & Bryk, 2002). In fact, if one’s research qguestions involve
means and covariances (or correlations), EM is a straightforward method for
obtaining ML estimates with incomplete data, and the procedure is widely avail-
able in software packages.

To be complete, it is necessary to distinguish between two seemingly different
applications of EM. The first approach, which might be described as “direct EM,”
is used to estimate the parameters of a linear statistical model. For example, the direct
EM approach is used in conjunction with hierarchical linear modcls (e.g., HLM,
SPSS MIXED procedure, SAS PROC MIXED) and structural equation models
(e.g., Mplus, EQS). This application of EM is somewhat different from that out-
lined by Dempster et al. (1977), because the data set used to fit the model may have
no missing values. In this context, EM views the model parameters (rather than the
data points themselves) as missing values to be estimated. In contrast, the “tradi-
tional” use of EM involves the estimation of a covariance matrix and mean vector
from a data set with missing values. We provide a description of EM in this context,
given its clear linkage to the goals of this article.

EM is an iterative procedure that repeatedly cycles between two steps: the F,
or expectation, step imputes missing values; and the M, or maximization, step esti-
mates the covariance matrix and mean vector. To illustrate, we return to the car-
lier example involving hours spent on homework (HW), parental involvement in
homework (PI), and reading achievement (RA).

The first EM step requires an initial estimate of the covariance matrix, which
can be obtained by using any number of methods (c.g., listwise dcletion). The
purposc of the £ step is to estimate the missing valucs, and this is accomplished
using regression imputation. For example, students with missing homework
reports would have their missing values replaced by predicted scores from the
regression of HW on Pl and RA. In a similar vein, students missing both Pl and
RA would have their missing values imputed from two scparate regressions (Pl
on HW and RA on HW). As pointed out earlier, a shortcoming of regression
imputation is the loss of residual variability present in the hypothetically com-
plete data (the imputed values fall directly on a regression line). To correct this
problem, a residual term is added to each imputed value in the £ step. The pur-
pose of the M step is to update the covariance matrix using the “filled-in” data
from the previous £ step. The updated covariance matrix is obtained using stan-
dard formulae, and this new covariance matrix is fed into the next I step, where
new estimates of the missing values are generated, and the two-step process is
repeated. The iterative process continues until the difference between covariance
matrices from adjacent M steps differs by some trivial amount,

The end product from an EM analysis is an ML estimate of a covariance matrix
and mean vector (not an imputed data set). Because correlations are closely
related to covariances (r=cov,,/0,0,), an EM covariance matrix can rcadily be
converted to a matrix of correlations. Although it is more computationally inten-
sive to do so, standard errors can also be obtained from EM, and the resulting
covariances can be tested for statistical significance. An EM covariance (or cor-
relation) matrix can be obtained from a variety of different software packages,
including SPSS (the Missing Values Analysis procedure), SAS (PROC M),
structural equation modeling packages (e.g., Mplus), and stand-alone freeware
packages available on the Internet (e.g., EMCOYV and NORM).

N
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Multiple Imputation

As noted previously, one of the problems with imputation procedures is that
the “filled-in” data set generally lacks variability that would have been present had
the data been complete. Rather than treating a single set of imputed values as “true”
estimates of the missing values, MI creates a number of imputed data sets (frequently
between 5 and 10), each of which contains a different plausible estimate of the
missing values. The analysis of interest is subsequently performed on each of the
m imputed data sets, and the parameter estimates (e.g., regression coefficients) are
averaged to produce a single set of results. Different M1 algorithms have been pro-
posed (Allison, 2000), but we focus on Bayesian MI, popularized by Schafer (1997).
Schafer’s approach can be implemented in a point-and-click environment using the
NORM freeware package and is also available in the SAS MI procedure; SPSS cur-
rently offers no MI facility. MI is arguably more complex than ML estimation, and
space limitations preclude a complete discussion of the topic. However, a number
of accessible introductions to M1 are available in the literature (Graham & Hofer,
2000; Schafer & Graham, 2002; Sinharay, Stern, & Russell, 2001); and Horton and
Lipsitz (2001) provide an overview of MI software packages.

Applying MI involves three distinct analytic phases: imputation, analysis, and
pooling of parameter estimates. The imputation phase is, itself, an iterative proce-
dure involving two steps, I and P. The I, or imputation, step resembles EM in that
a covariance matrix is used to construct a series of regression equations, and miss-
ing values are replaced by the predicted scores from these equations. Residual vari-
ation is restored to the imputed data points by adding a random draw from the
normal distribution of residuals for a particular variable.

Thus far, MI sounds quite similar to the imputation process used by EM or sto-
chastic regression imputation (i.e., values are imputed and residual variation is
restored). What sets MI apart is that different estimates of the population covari-
ance matrix are used to create each of the m imputed data sets. MI recognizes that
the missing data produce some uncertainty in the covariance matrix used to gen-
erate the imputed values. Thus, in the P, or posterior, step of the imputation phase,
new covariance matrix elements are randomly sampled from a distribution of pos-
sible values (in Bayesian terminology, known as a posterior distribution) based on
the filled-in data from the previous I step. Thus the imputation phase of Ml involves
a two-step procedure whereby missing values are imputed via a series of regres-
sion equations, and new covariance matrix elements are sampled from a distribu-
tion of values that are consistent with the previously imputed data. The new estimate
of the covariance matrix is used to construct new regression equations in the next
I step, and the process is repeated.

The ultimate goal of the imputation phase is to produce m imputed data sets,
each of which is “filled in” with values that are essentially a random draw from a
distribution of plausible missing values. However, the imputed values in adjacent
[ steps are correlated with one another (a process called autocorrelation), so the
imputation phase cannot simply be repeated 10 times (if m = 10 imputed data sets
are desired, for example). In practice, random draws are simulated by allowing a
sufficient number of I steps to lapse between each retained data set. For example,
if it was of interest to generate m = 10 imputed data sets, then 1,000 iterations
(cycles of 1 and P steps) could be performed, and every 100th imputed data set
could be retained for future analyses.
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Following the creation of the m imputed data sets, the data are analyzed and the
parameter estimates are pooled, or averaged. Unlike ML, the analysis phase of Ml
may be quite distinct from the missing-data handling phase (we avoid the phrase
“Imputation phase” because ML does not impute missing values). That is, a gen-
eral imputation strategy might be used with no particular analytic goal in mind,
whereas ML estimates a specific analytic model (e.g., a multiple regression, struc-
tural equation model). Regardless of whether the imputation phase was performed
with a specific analysis in mind, the analysis phase involves fitting the desired sta-
tistical model to each of the imputed data sets. Note that no special software is
needed in this phase, as the m analyses are being conducted on complete data sets.

The final MI phase involves pooling the parameter estimates and standard
errors from the analysis phase. For example, suppose it were of interest to estimate
the regression of student achievement on number of absences, as in the example
above. Assuming that m = 10 imputed data sets were created, the 10 regression
coefficients and standard errors would be collected into a new data file and sub-
sequently aggregated. A single estimand would be computed by simply averaging
the b,,. In a similar vein, standard errors are aggregated by taking into account the
average estimated standard error (technically, squared standard error, or variance)
and the variability of the parameter values across the 10 analyses. This process will
be demonstrated in the final section of the article.

Some final points should be made about MI. First, the definition of convergence
is quite different from that of ML.. ML estimation is said to converge when param-
eter values no longer change from one iteration to the next (they converge to a single
set of values). In contrast, MI involves sampling new covariance matrix elements
atevery cycle of the imputation phase, so parameter values never converge in value,
Instead, convergence is attained when the distribution of parameters stabilizes. In
practice this is achieved by allowing a number of “burn in” cycles (e.g., 200) to lapse
before retaining the first imputed data set. We return to this issue in more detail in the
final section of the article.

Second, MI also requires the multivariate normality assumption. However,
there is some evidence that MI performs well under fairly substantial violations of
normality (Graham & Schafer, 1999). On a related issue, Schafer (1997) suggests
that nominal and ordinal variables can be used in the imputation process, and MI
software packages offer a number of useful options in this regard (e.g., transfor-
mations, dummy coding, and rounding imputed values of discrete variables).

Finally, as mentioned previously, MI will produce unbiased parameter esti-
mates when data are MAR but is likely to produce biased estimates when data
are MNAR.

Comparison of Modern Missing-Data Techniques

Before proceeding to the methodological review, it is important to point out the
similarities and differences between ML and MI. As discussed previously, the pri-
mary advantage of both techniques is that they require less strict assumptions
about the missing data. This is not to imply that ML and MI will never produce biased
results. Quite the contrary—they will be biased if missingness is due to the outcome
variable itself (i.e., data are MNAR).

In terms of parameter estimates, ML and MI should produce similar results
when the same set of cases and variables is used, although MI standard errors may
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be slightly Targer (Collins, Schater, & Kam, 2001; Schafer & Graham, 2002). One
of the primary advantages of Ml is the ease with which auxiliary variables can be
incorporated into the imputation process. For example, one might wish to impute
missing values using a superset of the variables included in the ultimate analysis,
under the belief that the auxiliary variables may be related to missingness, thereby
reducing possible bias. Because the imputation and analysis phases are distinct
from one another, auxiliary variables can be used to impute missing values but need
not appear in the analytic model. This is not true for ML, however, where missing-
data handling is built directly into the estimation of the substantive model.

To illustrate, suppose it is of interest to regress student achievement on a num-
ber of educational predictors. In addition, it is suspected that parental socioeco-
nomic status (SES) may be related to missing data in a study (e.g., perhaps parents
from disadvantaged homes are less likely to return consent forms), but SES is not
a variable that appears in the regression analysis. For MAR to hold, SES scores must
be taken into account. This is straightforward for the MI user, as SES can serve as
a predictor in the imputation model but need not appear in the substantive regres-
sion model, because the imputed values are already conditioned on SES. In contrast,
SES must somehow be incorporated into the ML analysis, as missing-data han-
dling and estimation are concurrent processes. Simply adding SES as an additional
predictor is not a viable option, as doing so would alter the regression coefficients
specified by the substantive research questions. Fortunately, Graham (2003) out-
lined a method for incorporating auxiliary variables into an ML analysis that uses
existing structural cquation modeling software. Because structural equation mod-
eling is an increasingly general analytic framework, Graham’s (2003) approach can
be used for a variety of linear model analyses (e.g., correlation, regression). We
will demonstrate the inclusion of auxiliary variables using both ML and Ml in the
last section of this article.

On a related point, ML and MI differ in their level of generality and thus in the
breadth of analyses to which they can be applied. Again, the fact that the imputa-
tion and analysis phases are distinct gives MI a distinct advantage in this regard.
Because the substantive analysis is performed on (multiple) complete data sets, MI
can be used in conjunction with virtually any analytic model. In contrast, ML is
model-specific, in the sense that missing-data handling is built into the estimation
process. Thus, for ML to be applicable to a particular analysis, an estimation rou-
tine must be available in an existing software package. Fortunately, the number of
models for which an ML missing-data estimator is available is growing rapidly
(e.g., Mplus 3; Muthén & Muthén, 2004).

Methodological Review of Reporting Practices

Having provided an overview of the missing-data concepts, we now present the
findings from a methodological review of applied educational and psychological
literature. The purpose of this review was to investigate missing-data reporting
practices in a sample of applied research journals. In doing so, our primary con-
cern was to document the methods used to treat missing data and the reporting
practices used by authors who analyze incomplete data sets.

Roth (1994) reviewed a random sample of 45 articles from the Journal of
Applied Psychology and Personnel Psychology between 1989 and 1991 and found
listwise deletion and pairwise deletion to be the predominant approaches employed
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by empirical studies. This finding is not surprising given that the recent growth
spurt in the missing-data literature (and concurrent implementation of ML and Ml
in software packages) did not take place until the latter half of the 1990s. Accord-
ingly, we examined empirical articles from two years: 1999 and 2003. The year
1999 represents a demarcation line of sorts: In that year, a report by the APA Task
Force on Statistical Inference (Wilkinson & Task Force on Statistical Inference,
1999) specifically discouraged the use of listwise and pairwise deletion, stating that
these methods are “among the worst methods available for practical applications”
(p. 598). Since the publication of that report, the number of software options for
implementing ML and MI has grown to the point where software availability is
now no longer a limiting factor.

The data for the 1999 methodological review consisted of research articles
published in 16 educational and applied psychological journals. The selected jour-
nals represent a variety of disciplines within the field of education and psychol-
ogy, and they closely mirror those used in a methodological review of ANOVA
practices published by Kesselman et al. (1998) in the Review of Educational Research.
Having found no instances of ML or Ml in the 1999 volumes, we expanded the list
0f 2003 journals to 23. The sclected journals and the number of articles examined
from each are listed in Table 3. We acknowledge that the list of journals in Table 3
is not a random sample, nor does it reflect the full breadth of disciplines in edu-
cation and psychology. Although many important journals were omitted from the
list, the included journals do represent a broad cross-section of disciplines and are
consistent with previous methodological reviews published in the Review of Edu-
cational Research.

The methodological review excluded a number of writings that were not rele-
vant to the goals of our study, including meta-analyses, qualitative studies, policy
or position papers, and literature reviews. The frequencies listed in Table 3 reflect
only those articles retained for analysis. Note that the frequencies represent a cen-
sus of the 1999 articles and a random sample of 50% of the articles in each of the
2003 volumes. Finally, a substantial number of articles contained multiple studies
(Study 1, Study 2, etc.). In documenting the prevalence and use of missing-data
procedures, we chose to define the study, rather than the article, as the unit of analy-
sis. That is, multiple studies from the same article were treated as separate cases,
provided that independent samples were used in each study.

ldentifying the presence of, and enumerating the amount of, missing data proved
extremely difficult. In a typical study, details concerning missing data were seldom
reported, particularly in 1999. In cases where authors did not explicitly acknowledge
missing data, we examined the discrepancy between the reported degrees of freedom
for a given analysis and the degrees of freedom that onc would expect on the basis
of the stated sample size and design characteristics (e.g., number of ANOVA fac-
tors). A discrepancy in the degrees of freedom values (or degrees of freedom that
changed across analyses) thus indicated that data were missing.

The methods used to handle missing data were, in many cases, difficult to ascer-
tain because explicit descriptions of missing-data procedures were rare. The most
commonly employed methods were listwise deletion, pairwise deletion, or a combi-
nation of the two. Recall that listwise deletion removes cases with missing values,
whereas pairwise deletion omits cases on an analysis-by-analysis basis. Although the
distinction seems clear enough, these methods were not mutually exclusive within

537



TABLE 3
Frequency distribution of articles used in methodological review

Journal 1999 Studies 2003 Studies
American Educational Research Journal 7 3
Child Development 105 63
Cognition and Instruction 7 N/A
Contemporary Educational Psychology 14 10
Developmental Psychology 76 34
Educational and Psychological Measurement N/A 11
Educational Evaluation and Policy Analysis N/A 5
Educational Technology, Research and 7 4
Development
Journal of Applied Psychology 67 36
Journal of Applied Sport Psychology 13 8
Journal of Counseling Psychology 36 21
Journal of Educational Computing Research 9 7
Journal of Educational Psychology =17 31
Journal of Experimental Child Psychology 38 21
Journal of Experimental Education 12 2
Journal of Personality and Social Psychology 143 46
Journal of Research in Mathematics Education N/A 1
Journal of Research in Science Teaching N/A 11
Journal of School Psychology N/A 7
Journal of Special Education N/A 3
Modern Language Journal N/A 4
Reading Research Quarterly 11 6
Research in Higher Education N/A 15
Sociology of Education 8 4

Note. N/A = studies were not sampled from this journal for analysis.

a given study. For example, a number of studies described the blanket removal
of cases with missing data (i.e., listwise deletion) but went on to report sample
sizes that varied across analyses (i.e., pairwise deletion). Thus we ultimately
chose to classify studies as using either “traditional methods” (e.g., listwise dele-
tion, pairwise deletion, mean imputation, or regression imputation) or “modern
methods” (e.g., ML or MI).

Because the use of traditional missing-data methods was generally difficult to
identify, a set of coding criteria were established. A study was coded as using a tra-
ditional missing-data technique if any of the following criteria were met: (a) The
author included a statement describing the blanket removal of incomplete cases;
(b) a discrepancy was identified between the reported and expected degrees of free-
dom: (c) the sample size associated with a latent variable model fit statistic (e.g.,
the 2 statistic) was different from the stated sample size in the description of meth-
ods; (d) the author included a statement acknowledging that sample sizes varied
across analyses; (e) sample sizes varied across table entries (correlation matrices,
tables of descriptive statistics, etc.); or (f) the author explicitly acknowledged using
a traditional imputation method (e.g., mean or regression imputation). Based on
the extra analytic steps or specialized software required to implement ML and MI,
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we reasoned that the use of “modern” techniques could be identified only from
explicit descriptions of the procedure in the body of text.

Results of 1999 Methodological Review
Prevalence of Missing Data

Of the 989 studies (i.e., independent samples) that we examined, 737 (74.52%)
had no detectable missing data, 160 (16.18%) had missing data, and 92 (9.3%)
were indeterminate (e.g., degrees of freedom were not reported). Based on our
experience and the results of the 2003 review presented below, the 16% prevalence
rate may represent a gross underestimate, given that missing data were impossible
to detect in many cases. For example, studies using listwise deletion would be
identified only if the author explicitly described the procedure. In a similar vein,
we suspect that item-level missing data were frequently handled by computing
scale scores from the available items. Again, this practice is impossible to detect
without an explicit description of the procedure.

Proportion of Missing Data

Considering only those studies that we had identified as having missing data,
the proportion of missing cases per analysis ranged from less than 1% to approxi-
mately 67%, and the mean percentage of cases with missing data was M =7.60 (SD
= 8.07). Not surprisingly, we observed differences between cross-sectional and
longitudinal analyses. The maximum proportion of missing cases observed in a
cross-sectional design was 27.84%, as compared with a maximum of approxi-
mately 67% in a longitudinal design. The means for cross-sectional and longitudi-
nal designs were M =7.09 (SD = 6.07) and 9.78 (SD = 13.50), respectively.

It is important to understand that these missing-data rates represent the proportion
of missing cases per analysis, not the proportion of missing scores. To illustrate, con-
sider a multiple regression analysis. A single degree of freedom discrepancy in the
error term (the method we used to compute these percentages) could be caused either
by a case with a single missing value or by a case with multiple missing values. There-
fore, the missing-data rates reported here should be interpreted as representing the
proportion of cases excluded from a single analysis, not (a) the proportion of cases
in the sample having missing values, or (b) the proportion of missing values in the
data matrix. Unfortunately, these latter two quantities are impossible to obtain unless
explicitly reported.

Missing-Data Techniques
The 160 studies that we identified as having missing data relied exclusively on
traditional missing-data techniques, and we observed no instances of ML estima-
tion or MI. Consistent with Roth (1994), approximately 96% of the articles we
reviewed used listwise deletion, pairwise deletion, or some combination of the
two. In addition, five studies used some form of mean imputation, and a single
study used regression imputation.

Exemplars of Reporting Practice

The fact that no instances of ML or MI were observed is, itself, problematic given
the preponderance of recent methodological studies favoring these approaches.
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The level of attention given to reporting missing data in the 1999 articles is, per-
haps, equally problematic. One anonymous reviewer of this article characterized
missing data as a “dirty little secret” of educational research, and we feel that this
statement accurately describes the treatment of missing data in the published research
reports that we reviewed. To illustrate “typical” practice, we provide a number of
exemplars from those articles. In doing so, it was not our intent to single out indi-
vidual studies for the purpose of imposing a value judgment. Rather, it was our
hope that these examples might provide an impetus for improving reporting prac-
tices. In the spirit of this goal, we take an unorthodox approach and exclude cita-
tions from the quoted material presented in this section in an effort to protect the
anonymity of the original works. Detailed citations will be made available to readers
upon request.

Consistent with Roth (1994), it was relatively rare for authors to explicitly
mention missing data in their research reports. Considering the 160 studies that
we identified as having missing data, only 54 (33.75%) explicitly acknowledged
the problem. In many cases we hesitate to characterize these reports as “explicit,”
because discussions of missing data were relegated to a footnote or table note. In
contrast, 106 (66.25%) of the studies that we identified as having missing data
did not mention the problem, and missing values were inferred from degrees of
freedom values that were inconsistent with the stated sample size and design
characteristics.

In cases where authors did explicitly mention missing data, it was extremely rare
to name the technique used. For example, we found only three articles that used the
term “listwise” to describe their method, and only one used that term in the body of
the article (as opposed to a table note). These authors stated, “The listwise deletion
sample of families with no missing data produced an n of 190 for the analysis.” It
was common for authors to use words such as “eliminated,” “excluded,” and “dis-
carded” to describe a listwise reduction in the overall sample size. For example, one
study reported, “Of the 199 children in this sample, 194 had complete data on all
measures and were included in the analysis (S had missing data on one or more mea-
sures and were excluded).” Similarly, another study reported, “Another 13 individ-
uals completed surveys but were not counted as respondents because their surveys
were either missing too much data or the responses appeared to be confused.”

In a similar vein, we found only a single article that used the word “pairwise”
to describe the method used, and that reference appeared in a table note. Among
studies that explicitly mentioned missing data, the most common strategy used to
convey pairwise deletion was a statement highlighting sample size differences
across analyses (e.g., “Sample sizes may vary slightly from one task to the other
because some participants were absent on certain occasions and tasks could not be
readministered™). Similarly, one author explained the discrepancy in the reported
degrees of freedom in a footnote as follows: “Degrees of freedom vary slightly
across analyses because of occasional missing data.”

Given that the majority of studies made no mention of missing data, it is proba-
bly not surprising that only three articles made an attempt to test the MCAR assump-
tion. In one case, the authors created a dichotomous dummy variable that denoted
whether a subject had missing data at the final measurement occasion of a longi-
tudinal study, and compared these two groups on a number of response variables
(equivalence of means would lend some support to the MCAR assumption). In a
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footnote, the authors stated, “7-tests were used to compare study participants who
had parental reactions measures at T5 with those who did not (i.e., had dropped from
the sample or had missing data on the target parent reactions measure) on all of the
major variables used in the analyses.” The authors go on to state that no significant
differences were observed.

Finally, we found situations where authors justified their handling of missing
data on the basis of inaccurate information. For example, one author explained, “Due
to concerns about these sample biases, and the percentage of cases that would be
deleted using listwise deletion, mean substitution was made for those cases miss-
ing moderate amounts of data.” This author went on to report that 14% of the cases
had their missing values imputed. Interestingly, the author’s rationale for employ-
ing mean imputation was based on concerns about parameter estimate bias, even
though it is known that mean imputation produces substantial bias of virtually
every parameter except the mean (e.g., Little & Rubin, 1987). In another case, the
study’s author used a series of £ tests to compare observations that had missing values
with those that had complete data. After finding significant differences, the author
incorrectly attempted to remedy the situation with mean imputation. He stated that
“[a]fter mean substitution . . . there were fewer significant differences between
groups.” Unfortunately, this staternent implies that bias due to missing data was some-
how eliminated with mean imputation, when it is more likely that the lack of group
differences resulted from an infusion of bias due to mean imputation.

Results of 2003 Methodological Review

The articles reviewed thus far were published in the same year as the report from
the APA Taskforce on Statistical Inference (Wilkinson & Task Force on Statistical
Inference, 1999), which encouraged authors to report complications such as miss-
ing data and discouraged the use of listwise and pairwise deletion. Although the
1999 articles serve as a useful baseline for comparison, it is unreasonable to expect
the taskforce’s recommendations to be evident in these research reports. Thus we
reviewed the 2003 volumes of 23 journals in an attempt to document changes in
missing-data reporting practices that have occurred since the 1999 report.

Of the 545 studies examined, 288 (52.84%) had no detectable missing data, 229
(42.02%) had missing data, and 28 (5.14%) were indeterminate (e.g., degrees of
freedom were not reported). What is striking about these findings is that the pro-
portion of studies with missing data increased from 16% in 1999 to 42% in 2003.
Although this might appear odd, the apparent increase in the prevalence of miss-
ing data can be attributed to a change in reporting practices. As noted earlier, we
were unable to detect the presence of missing data in many cases (e.g., listwisc
deletion) unless authors explicitly acknowledged the problem. In 1999, it was rel-
atively rare for authors to acknowledge missing data; only 33.75% of the studies
that we identified as having missing data explicitly acknowledged the problem.
However, the proportion of studies that acknowledged missing data increased dra-
matically in 2003; of the 229 studies that we identified as having missing data, 170
(74.24%) explicitly mentioned the problem. Thus it appears that more studies are
adhering to this recommendation by the APA taskforce: “Before presenting results,
report complications, protocol violations, and other unanticipated events in data
coliection. These include missing data, attrition, and nonresponse” (Wilkinson &
Task Force on Statistical Inference, 1999, p. 597).
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Another positive, albeit minor, shift in reporting practices has to do with testing
the MCAR assumption. Only 3 studies in the 1999 sample examined mean differ-
ences between respondents and nonrespondents (support for MCAR is established
if respondents and nonrespondents have equal means on other study variables), but
we found 15 studies in the 2003 sample that did so. Although this is a relatively small
percentage of the 229 studies that we identified as having missing data (6.5%), it
nevertheless represents an improvement. Note also that the level of reporting detail
varied across studies; some studies mentioned these tests in a single sentence, while
others devoted considerable space to the issue.

Although the increase in the proportion of studies that explicitly mentioned miss-
ing data was a major improvement in reporting practices, the methods used to ana-
lyze the data changed very little in 2003. Of the 229 studies that we identified as
having missing data, we found only 6 that used ML estimation or ML Fifteen addi-
tional studies used growth modeling techniques to analyze repcated measures data,
but the missing-data technique used by these studies was unclear. It is quite likely
that many of these studies used ML estimation, given that it is the default missing-
data handling procedure in some growth modeling software packages. However, this
assumption is not necessarily safe, as we found growth modeling studies that per-
formed listwise deletion in spite of the software defaults.

In the interest of saving space, we do not provide exemplars of problematic
reporting practices observed in the 2003 articles; the 1999 results are quite repre-
sentative in this regard. Instead, we highlight 2003 articles that used ML estima-
tion and M1, as these articles may serve as useful models for researchers preparing
their manuscripts.

McQueen, Getz, and Bray (2003) might be viewed as a model article, at least
with respect to missing-data reporting practices. These authors devoted three para-
graphs in the methods section to their exploration and handling of missing data and
provided the following description of ML estimation:

Amos 4.0 software was used to test the hypothesized models in this study.
Amos does not impute missing values but instead recognizes missing data and
uses all observed data values to estimate models with a full information max-
imum likelihood (Anderson, 1957) approach. With this sample, Amos iden-
tified 2,441 cases containing some or all of the data being analyzed. Full
information maximum likelihood is the recommended estimation method of
choice when the data are missing at random, and it may be less biased than
other multivariate approaches when missing data are nonignorable. (p. 1741)

In a similar vein, Snyder et al. (2003, p. 1884) and Sadler and Woody (2003,
p. 84) provided explicit descriptions of ML cstimation for missing data in their
methods sections.

Only two studies, Hill, Brooks-Gunn, and Waldfogel (2003) and Tolan, Gorman-
Smith, and Henry (2003), used MI to treat missing values before the analysis. Hill
et al. (2003) offered the following description of their procedure:

We used multiple imputation (MI; Baer, Kiviahan, Blume, McKnight, &
Marlatt, 2001; Rubin, 1987; Schafer, 1997), which replaces missing values
with predictions based on all the other information observed in the study. M1
relies on more plausible assumption than do standard approaches (listwise
delction or complete case analysis), properly accounts for our uncertainty
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about the missing values (leading to appropriate standard crrors), and retains
the original sample size of the study. (p. 735)

Ilustrative Analyses

If the routine use of ML and MI represents one of the fundamental “changes in
research over the next decade” (Azar, 2002, p. 70), it is important for applied
researchers to gain some exposure to these new analytic methods. In this section
we illustrate ML estimation and M1 using a sample of 3,116 cases extracted from
the Longitudinal Study of American Youth (LSAY).

To keep the analytic model simple, ninth-grade math composite scores were
regressed on four predictor variables measured in the seventh grade: minority
status (0 = Caucasian, | = Minority); educational expectations (coded on a 6-point
scale anchored at “high school only” and “Ph.D.”); parental academic encour-
agement; and peer academic encouragement (the two being scale scores expressed
on the z-score metric). Although not in the regression model, three additional
variables served as “auxiliary variables”: average parental socioeconomic index,
home resources, and a dichotomous problem behavior indicator (0 = no problem
behavior, | = the student was expelled or arrested, or dropped out). The variables
used in this example were not intended to test meaningful substantive hypotheses
but were chosen to illustrate certain nuances of ML estimation and MI.

A brief discussion of auxiliary variables is warranted at this point. Auxiliary
variables can be thought of as variables unrelated to one’s hypotheses but possibly
related to the propensity for missing data. The inclusion of auxiliary variables can
play an important role in estimating a model with missing data. To understand why
this is so, recall that ML estimation and MI rely on the untestable assumption that
missing values are related to other variables in the data (i.c., the MAR mechanism).
To illustrate, suppose that missing ninth-grade math scores are related to parental
socioeconomic status (e.g., perhaps families in a particular income bracket have
higher mobility rates). If this were true, we would expect regression coefficients
from the illustrative analysis to contain some bias because the MAR assumption
has not been satistied (socioeconomic status does not appear in the regression
model). However, this bias could be reduced if information from sociocconomic
status scores were used during estimation. As we will illustrate, this is quite straight-
forward with MI, as the imputed data sets are created by using a superset of the
variables included in the ultimate analysis. The inclusion of auxiliary variables is
not as straightforward with ML estimation but can be readily accomplished with
existing software.

We begin the illustrative analyses with some basic data screening. Univariate
skewness values for the continuous variables ranged between 0.10 and 0.86 in
absolute value, while kurtosis values ranged between 0.16 and 0.68 in absolute
value. These values suggest that the data are relatively symmetric, but univariate
normality does not necessarily imply multivariate normality (Henson, 1999). How-
ever, Mardia’s (1974) test of multivariate kurtosis (i.e., b2, p) was not statistically
significant, MK = 47.57, 7 = -0.95, p = .34, which indicated that the multivariate
normality assumption was satisfied. Four of the variables (educational expecta-
tions, the problem behavior indicator, parental academic encouragement, and peer
academic encouragement) had very few missing data—the largest missing-data
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rate was 1.28%. Missing data were more problematic for the remaining variables:
minority status (5.07%), home resources (8.22%), average socioeconomic index
(12.52%), and ninth-grade math scores (28.8%).

Although the proportion of missing data is important (and rarely reported), the
missing-data mechanism bears heavily on the issue of parameter estimate bias. As
noted previously, it is only possible to test for an MCAR mechanism, as any test
of MAR or MNAR would require knowledge of the missing values. One method
for examining whether data are MCAR is to create dummy codes for each vari-
able with missing values (e.g., 0 = nonrespondents, 1 = respondents) and compare
the group means of other measured variables (equality of group means suggests
that respondents and nonrespondents do not systematically differ on some other
measured variable, thus providing support for MCAR). Clearly, this procedure can
produce a substantial number of tests, so multiple comparison issues are certainly
relevant. As always, significance tests of these group differences should be accom-
panied by cffect size estimates (Thompson, 1999). To illustrate, we created missing-
data indicators for minority status and ninth-grade math scores (the two regression
variables with substantial missing data), and performed group mean comparisons
using the remaining variables in the regression model. Cohen’s d effect size values
for these comparisons ranged between 0.05 and 0.28 (the average d was 0.16),
suggesting minimal deviations from MCAR.

Little (1988) proposed a multivariate test statistic for MCAR that is akin to a
simultancous test of all mean differences described above. In fact, Little’s proce-
dure reduces to a simple f test when data are bivariate and missingness is restricted
to a single variable. Little’s (1998) test is available in commercial software pack-
ages (e.g., SPSS Missing Values Analysis), and a custom SAS program for imple-
menting the test can be downloaded at http://manila.unl.edu/ckenders. For the
LSAY example, Little’s MCAR test was statistically significant, ¥*(31,N=3,116)
=111.26, p <.01, which suggests that the five LSAY variables cannot be described
as MCAR. Although this test appears to be at odds with the previous d values, one
must consider the fact that the chi-square test is very powerful with a sample this
large, and is quite capable of detecting relatively small mean differences between
respondents and nonrespondents.

After screening the LSAY data, one might reasonably conclude that listwise
deletion will perform adequately, given the apparent minor deviations from MCAR.
Although the listwise deletion sample size (7 = 2,134) is likely to provide suffi-
cient power in this example, the removal of nearly 1,000 cases from the data is
undesirable and unnecessary. Thus we proceed by demonstrating ML and Ml in the
context of the LSAY data.

Maximum Likelihood Estimation

Structural equation modeling (SEM) software provides a convenient platform
for implementing ML estimation because (a) many common analytic models (e.g.,
regression, ANOVA) are special cases of structural equation models; and (b) all
commercial SEM packages offer ML estimation with missing data. The LSAY
regression model is expressed in path diagram form in Figure 1.

Note that the regression model in Figure 1 does not include the three auxil-
iary variables. Graham (2003) proposed two methods for incorporating auxiliary
variables into a ML analysis, and we illustrate one of these approaches, the so-
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FIGURE 1. LSAY regression model expressed as a path diagram. Regression coeffi-
cients are denoted by straight arrows, correlations by curved arrows. The rectangles
represent the five observed variables. The residual portion of each person’s outcome
variable score is considered to be an unobserved, or latent, variable, and is repre-
sented by the ellipse (e).

called “saturated correlates model.” Graham (2003) outlined three rules that dic-
tate the inclusion of auxiliary variables in a model: The auxiliary variables
should be (a) correlated with one another; (b) correlated with observed (not
latent) predictor variables; and (c) correlated with the residuals of any observed
(again, not latent) outcome variable. Applying these rules to the LSAY example
results in the path diagram in Figure 2. To reduce visual clutter, a single rectan-
gle is used to denote the set of auxiliary variables in this figure. Each auxiliary
variable would be required to correlate with the predictor variables and residual
term (i.e., the curved arrows in the diagram), but would also correlate with other
auxiliary variables (this would be denoted by curved arrows among the auxiliary
variables in the path diagram). At a conceptual level, it is easy to see that infor-
mation from the auxiliary variables is incorporated into the model via the corre-
lations with the variables appearing in the regression, but the inclusion of the
auxiliary variables does not alter the meaning of the model’s substantive param-
eters (e.g., each regression coefficient partials out the remaining three predictors,
not the auxiliary variables).

The model in Figure 2 was estimated by using Mplus 3.01. The parameter esti-
mates and standard errors that resulted are presented in Table 4 (labeled b and SE,
respectively). Although these estimates were derived by means of ML estimation,
the interpretation of the regression coefficients (and all other model parameters) is
identical to the least squares case that most researchers are familiar with. For
example, a unit increase in seventh-grade expectations is expected to result in a
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FIGURE 2. LSAY regression model with auxiliary variables. Regression coefficients
are denoted by straight arrows, correlations by curved arrows. The rectangles at left
represent the observed and auxiliary variables. The residual portion of each per-
son’s outcome variable score is considered to be an unobserved, or latent, variable,
and is represented by the ellipse (e).

3.39 increase in ninth-grade math scores, holding minority status, parental acade-
mic encouragement, and peer academic encouragement constant. Consistent with
least squares estimation, ML estimation also provides standard error estimates for
each parameter. For example, the standard error for the expectations regression
coefficient is 0.18; it represents the amount of uncertainty, or sampling error, asso-
ciated with the coefficient. As is usually the case, a f ratio can be computed by
dividing the parameter estimate by its standard error. In the case of educational
expectations, £ = 19.16, which is statistically significant at p <.05.

As a technical aside, some software packages offer the option to estimate stan-
dard errors on the basis of either the observed or the expected information matrix.
When given the option, standard errors should be estimated by using the observed
information matrix option, as the resulting standard errors are more appropriate
when data are MAR (Kenward & Molenberghs, 1998).

546



TABLE 4
Results of LSAY regression analysis

Predictor b SE t
Maximum likelihood
Minority status -5.94 .56 -10.59
Educational expectations 3:39 18 19.16
Parental academic encouragement J3 27 273
Peer academic encouragement 31 .26 1.19
Multiple imputation
Minority status ~5.82 S =10:22
Educational expectations 3.38 19 18.25
Parental academic encouragement .81 24 3:31
Peer academic encouragement .26 27 99

Note. b = unstandardized regression coefficient estimate.

Multiple Imputation

Unlike the previous ML analysis, M1 handles missing data in an imputation
phase that precedes the analytic phase. Thus it is first necessary to decide which
variables should be used in the imputation model. Schafer (1997, p. 143) suggests
that the imputation model should (a) include variables related to the variables being
imputed; (b) include variables potentially related to the missingness; and (¢) be at
least as general as the analysis model (e.g., if the analysis includes an interaction,
the imputation model should as well). In the spirit of these guidelines, the LSAY
data were imputed using a superset of eight variables that included the five vari-
ables from the multiple regression model and the three auxiliary variables.

The MI analysis was carried out with Schafer’s (1999) NORM program, which
can be downloaded free of charge at the Penn State Methodology Center’s website
(http:fimethodology.psu.edu/downloads/mde.html). NORM uses a graphical inter-
face that requires no programming or syntax. ASCII (i.e., text) data files are easily
imported, and the program offers the user a number of pre- and post-imputation
options, such as estimating an EM covariance matrix and mean vector, applying
transformations, automatically dummy-coding categorical variables, specifying
rounding precision for discrete variables, and pooling MI parameter estimates, to
name a few. A more detailed overview of the NORM program can be found in
Schafer and Olsen (1998).

The LLSAY data were converted to an ASCII file and imported into NORM,
which reads data in free format. So a missing value code of ~9 was assigned to all
variables (NORM assumes a code of =9 by default, but any value can be used).
NORM offers the user a number of options for exploring the data before imputa-
tion. For example, histograms and normal quantile plots can be used to examine
distribution shape. An examination of these plots revealed that the numeric LSAY
variables were relatively symmetrical, so we chose not to transform variables
before imputation (NORM can automatically implement a number of different
power transformations).

Another option that one must consider is the rounding of imputed values. We
purposefully included a number of discrete variables in this analysis (e.g., minority
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status, home resources) to illustrate this issue. NORM allows the user to (a) round
imputed values to a specified decimal or integer; (b) round values to the nearest
observed value; or (¢) not round at all. For example, consider the home resources
variable, for which the observed values were integers ranging between zero and 6.
If one chooses not to round, the imputed home resources scores will not be integers,
and some values may fall out of range (e.g., <0 or > 6). To avoid this outcome, we
chose to round all discrete variables to the nearest observed value, thus ensuring that
the imputed values were consistent with each variable’s original metric.

Before creating the imputed data sets, it is usually good practice to estimate the
covariance matrix and mean vector by using the EM algorithm, as this can provide
insight into the convergence behavior of the MI algorithm (Schafer, 1997). Recall
that each imputed data set should simulate a random draw from the distribution of
plausible values for the missing data, and this is accomplished by allowing a suf-
ficient number of / (imputation) steps to lapse between each imputed data set. To
this end, it is frequently suggested that the number of I steps separating each
imputed data set be at least twice as large as the number of iterations required by
EM to converge (i.e., the “2 times the number of EM iterations” rule). In the LSAY
example, EM converged after only 14 iterations, which suggests that the MI algo-
rithm might converge even more quickly (Schafer, 1997).

The convergence behavior of the MI algorithm can be assessed more formally
by examining time series and autocorrelation function plots, both of which are
available in NORM. To explore this issue, we specified 200 iterations of the M1
algorithm and saved the variable means and covariances drawn from the poste-
rior distribution at cach of the 200 P steps (this is accomplished by using options
found on the tab labeled “Data augmentation”). Note that the goal of this proce-
dure is to examine the convergence behavior of the MI procedure in this particu-
lar set of data (a quality control check); therefore, no imputed data sets were
actually saved at this point.

Time series plots display the value of a given parameter (¢.g., a mean or covari-
ance) at each P step in the imputation process. Time series plots should be exam-
ined for all means and covariances, but we illustrate such a plot using the worst
linear function (WLF) of the parameters, a scalar function of the means and covari-
ances that converged most slowly (Schafer, 1997, pp. 129-131). The time series
plot produced by the NORM program and shown in the upper panel of Figure 3
suggests that the M1 algorithm converges reliably, because the values of the WLF
are contained within a horizontal band that does not vertically drift or wander
across the 200 iterations.

Again, recall that each imputed data set should simulate a random draw from
the distribution of plausible values for the missing data. The degree of serial depen-
dence in parameter values can be assessed graphically by using autocorrelation
function plots. For a given parameter (e.g., a mean or covariance), the lag-k auto-
correlation is the Pearson correlation between parameter values separated by kiter-
ations. For example, if 100 cycles of the MI algorithm are specified, the lag-3
autocorrelation for the parental encouragement mean is obtained by correlating
mean values from iterations 1 to 97 with those from iterations 4 to 100 (i.e., the
correlation between mean estimates separated by 3 iterations). Ideally, the auto-
correlation should drop to within sampling error of zero within a few iterations
(lags), and this is the case with the LSAY data. As can be seen in the lower panel
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FIGURE 3. Time series and autocorrelation function plot from LSAY
multiple imputation analysis.

of Figure 3, the autocorrelations for the WLF quickly drop to within sampling error
of zero (the confidence interval around zero is shown by the two horizontal lines),
which suggests that the serial dependence between imputed data sets dies off rather
quickly. A more detailed discussion of M1 convergence is found in Schafer (1997,
p. 118), along with further examples of time series and autocorrelation function plots.

Having explored the convergence behavior of the MI algorithm. we created
m = 10 imputed data sets using a single sequential imputation chain; Schafer (1997)
recommends the use of 5 to 10 imputed data sets in most cases. Although the EM
analysis and autocorrelation function plots suggested the need for relatively few
tterations, we opted for a more conservative approach whereby an imputed data set
is saved after every 100th cycle of the MI algorithm, beginning with the 200th iter-
ation. In NORM, this is accomplished by setting the number of iterations to 1,100,
then specifying that an imputed data set be saved after every 100th iteration (both
options are specified in the “Data augmentation” tab). This procedure produces 11
imputed data sets, but only the final 10 sets were subsequently analyzed (i.c., a
“burn-in” period of 200 iterations was used).
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Once the imputed data sets have been generated, any number of analyses can
be conducted by using standard complete-data methods. In the case of the LSAY
data, this involved estimating the four-predictor regression model using each of the
m = 10 imputed data sets. Because the imputed data values have already been con-
ditioned on the auxiliary variables, these three variables can now be ignored. Con-
ducting 10 multiple regression analyses may, at first glance, appear tedious, but the
procedure can be automated. We merged the 10 imputed data sets into a single
SPSS data file and created a new variable that indexed each imputed data file (i.e.,
the index variable took on values between 1 and 10). We then used the SPLIT FILE
command to generate a separate regression model for each imputed data set (a sim-
ilar procedure could be accomplished in SAS by using the BY option).

At this point, we had m = 10 sets of parameter estimates and standard errors,
one set from each imputed data file. To illustrate, the regression coefficients and
standard errors associated with seventh-grade educational attainment expectations
are given in Table 5 (labeled b and SE, respectively). The final phase in a MI analy-
sis involves pooling, or averaging, these values into a single set of estimates using
rules outlined by Rubin (1987). We illustrate the pooling phase using the regres-
sion coefficients and standard errors shown in Table 5.

A single estimand can be obtained for any parameter by taking the arithmetic
average of that parameter across the m analyses. That is,

o ] m

0==Y 0, 3)

nm ;-
where m is the number of imputations and 0, is the parameter estimate from
the ith imputed data set. To illustrate, the arithmetic average of the regression
coefficients given in Table 5 is b = 3.38. As with the ML analysis, the interpre-
tation of this coefficient is identical to the interpretation one would make had
there been no missing data; a unit increase in seventh-grade educational expec-
tations should result in a 3.38 increase in ninth-grade math scores, holding other
predictors constant.

TABLE 5

Expectations regression coefficients from 10 imputed data sets

Imputation b SE Variance (SE?)
1 3.233 .149 .022
2 3.431 151 .023
3 3.348 105 011
4 3.548 150 023
5 3.468 .148 022
6 3.234 150 .023
7 3.339 150 .023
8 3.505 152 .023
9 3.303 149 .022

10 3.390 151 023

Note. b = unstandardized regression coefficient estimate.
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The rule for combining standard errors is slightly more complicated than com-
bining point estimates. The pooled standard error is a function of two quantities,
the within-imputation variance and the between-imputation variance. The within-
imputation variance is the arithmetic average of the squared standard errors across
the m analyses, or

1 m A
= 3.5, o

i-1

U =

where U, is the variance estimate from the ith imputed data set, and m is the num-
ber of imputations. From Table 5, the arithmetic average of the m =10 variance
estimates (i.e., squared standard errors) is 0.0214.

The between-imputation variance quantifies the variability of the m parameter
estimates around the mean estimate, and is given by

B=1%(6 -2V 5)

m i

=

where m is the number of imputations, Q. is the parameter estimate from the ith
imputed data, and Q is the mean parameter. Using the coefficients found in Table 5,
the between-imputation variance is 0.011.

Finally, the total variance, the square root of which is the pooled standard error,
is a function of the within- and between-variance estimates as follows:

T:U+(1+i)3. (6)

m

Using the within- and between-imputation variance components calculated pre-
viously, 7" = 0.033. Thus. the MI standard error estimate for the expectations
regression coefficient is «/7 or 0.19. Consistent with the pooled parameter esti-
mate, the interpretation of this standard error is identical to the least squares cases.
Therefore, 0.19 represents the amount of uncertainty, or sampling error, associ-
ated with the educational expectations regression coefficient. As is usually the
case, a t ratio can be computed by dividing the parameter estimate by its standard
error. In the case of educational expectations, 7= 18.25, a result that is statistically
significant at p < .05.

Although the previous computations are useful for pedagogical purposes,
parameter estimates and standard errors can be quickly combined using NORM
(choose “MI Inference: Scalar” from the Analyze pull-down menu). The param-
eter estimates and standard errors are highlighted and copied from the SPSS out-
put file and pasted into an ASCII file so that the results from cach imputed data set
are stacked on top of the next. For example, the LSAY regression results were
pasted into a new ASCII file consisting of 40 rows (4 regression coefficients for
each of the 10 imputations) and two columns (one for the estimates, the other for
standard errors). NORM reports the pooled parameter estimates and standard
errors shown above, and also provides 7 ratios, p values, and 95% contidence inter-
vals for each parameter. The parameter estimates, standard errors, and ¢ ratios for
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each predictor variable are given in Table 4. Note that the MI estimates are quite
similar to those obtained from the ML analysis in this particular example.

The usual omnibus test of R? in multiple regression is akin to simultaneously
testing whether all regression coefficients differ from zero (Pedhazur, 1997). Fol-
lowing procedures outlined by Rubin (1987) and by Li, Raghunathan, and Rubin
(1991), an approximate F test can be used to test whether the vector of regression
coefficients, i.e., " = (-5.82, 3.38, 0.81, 0.26), obtained from the MI analysis is
equal to zero (i.e., multiparameter inference). This test requires the strong assump-
tion that the missing information (a function of the missing-data rate and magnitude
of relationships among the variables) is the same for all variables, but a simulation
study conducted by Li et al. (1991) suggested that accurate significance tests can
be obtained even when this assumption is violated, although the test tends to become
slightly conservative in that case.

Multiparameter inference is also available in NORM but requires parameter esti-
mates and the parameter covariance matrix from each of the m analyses. The param-
eter covariance matrix, the diagonal of which contains the squared standard errors,
can be obtained from the SPSS REGRESSION procedure by clicking on the “Sta-
tistics” button, then selecting “Covariance matrix” from the section of the interface
labeled “Regression Coefficients.” Note that this covariance matrix contains infor-
mation about the variance and covariance of the regression coefficients; it is not the
same as the covariance matrix of the scores. Consistent with the previous descrip-
tion, the parameter estimates and parameter covariance matrix from each of the m
analyses are highlighted and copied from the SPSS output file and stacked in an
ASCII file (the NORM Help menu shows the exact layout for this file), and “MlI
Inference: Multiparameter” is selected from the Analyze pull-down menu. The
LSAY data produced a statistically significant F" test in this case, (4, 120)=101.61,
p <.001, meaning that the set of predictors is significantly difterent from zero. It is
important to note that the derivation of the multiparameter significance test relies
on a large N, and the utility of this test in small samples is unclear.

Discussion

During the last 25 years, substantial progress has been made in the area of
missing-data analyses. Software for carrying out ML estimation and M1 is now widely
available, and empirical studies have, almost unequivocally, demonstrated the
superiority of these methods over traditional methods such as listwise and pairwise
deletion (e.g., Arbuckle, 1996; Enders, 2001a, 2001b, 2003; Enders & Bandalos,
2001; Gold & Bentler, 2000; Graham, Hofer, & MacKinnon, 1996; Graham &
Schafer, 1999; Muthén, Kaplan, & Hollis, 1987; Kaplan, 1995; Wothke, 2000).

Although ML and MI may be familiar to many methodologists, one of the goals
of this article was to disseminate information about these “modern” missing-data
procedures to a wide group of applied researchers. A second goal was to examine
the current missing-data analytic practices in a sample of educational and applied
psychological journals. As is noted by Keselman et al. (1998), “One consistent
finding of methodological research reviews is that a substantial gap often exists
between the inferential methods that are recommended in the statistical research
literature and those techniques that are actually adopted by applied researchers”
(p. 351). Our review of 1999 and 2003 suggests that this statement is definitely true
of procedures for handling missing data.
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The year 1999 represents a demarcation line of sorts, as a report by the APA Task
Force on Statistical Inference ( Wilkinson & Task Force on Statistical Inference, 1999)
encouraged authors to report complications such as missing data and discouraged the
use of listwise and pairwise deletion. The results of our methodological review indi-
cated that authors are reporting their missing data with increased frequency: In 1999,
33.75% of the studies that we identified as having missing data explicitly reported
the problem, whereas this number more than doubled, to 74.24%, in 2003. Whether
this increase represents changing editorial policies, an increased awareness of
missing-data issues, or both, is unclear. Nevertheless, an increase in the proportion of
studies that explicitly mention missing data is a clear improvement, and it is hoped
that journal editors will continue to encourage sound reporting practices.

However, our methodological review indicated that the methods used to treat
missing data have not changed; we identified only six studies in 2003 that defin-
itively used ML or ML This is probably not surprising, given that major analytic
trends—particularly those that are as entrenched as missing-data handling—tend
to move somewhat slowly. In addition, software availability almost certainly
governs changes in analytic trends. To date, general ML estimation algorithms
are available primarily in SEM software packages. Although common classical
analyses such as ANOVA and regression can be performed by using SEM soft-
ware, it is reasonable to expect the use of “modern” missing-data methods to
grow slowly until these methods become readily available in statistical packages
such as SPSS.

In sum, we hope that applied researchers will consider the biasing impact that miss-
ing data can have on their results and take seriously the recommendations put forth
by the APA taskforce. In a similar vein, we encourage the adoption of editorial poli-
cies that require authors to examine requisite missing-data assumptions (i.e., MCAR)
and to implement “modern” missing-data techniques in cases where traditional tech-
niques cannot be justified. The final section of this article presented a heuristic analy-
sis of the LSAY data, and it is hoped that this illustration will serve as a model for
researchers who wish to use ML or MI approaches to handle their missing data.
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